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Abstract. We consider Galerkin methods for monotone Abel-Volterra integral equa- 
tions of the second kind on the half-line. The L2 theory follows from Kolodner's theory 
of monotone Hammerstein equations. We derive the LOO theory from the L2 theory by 
relating the L2- and LOO-spectra of operators of the form x -- b * (ax) to one another. 
Here * denotes convolution, and b E L1 and a E LOO. As an extra condition we need 
b(t) = O(t-a-1), with a > 0. We also prove the discrete analogue. In particular, we 
verify that the Galerkin matrix satisfies the "discrete" conditions. 

1. Introduction. In this paper we study Galerkin methods for the approximate 
solution of monotone Abel-Volterra integral equations of the form 

rt 
(1.1) x(t) + A ] (t - s)a-g(s, x(s)) ds = y(t), t > 0, 

where 0 < a < 1 and g is a "nice" function of its arguments, with g(s, 0) = 0 for 
all s E R+, and 

(1.2) Re (x1 - x2)(g(s, x1) - g(s, X2)) > 6Ix1 - x212 

for all (s, xi) E R+ x C, 

Ig(s, X1) - 9(S, X2)I < Dlxl - x21 

for some positive constants D, 6, and where I arg Al < (1 - a)7r/2. We assume that 
g(s, a + ir) is at least continuously differentiable with respect to the real variables 
a and r. In particular, we assume that (1.17) holds, see below. Our insistence on 
solving Eq. (1.1) on all of (0, oo) is really just shorthand for writing that we want 
to solve (1.1) on some finite interval [0, T] without any size restrictions on A or T 
(and the mesh width in the Galerkin methods). 

The Galerkin methods we consider here use subspaces of C(-1) piecewise poly- 
nomial functions on uniform grids. Accurate L2 error estimates for the error 
in the Galerkin approximations are easily derived from the monotonicity of the 
Abel transform, which is preserved by the Galerkin approximation scheme, and the 
Hammerstein-Kolodner theory [15]. However, we are particularly interested in LOO 
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(uniform) error estimates, which follow once the solvability of (1.1) and the Galerkin 
equations are properly understood. We are able to do this by virtue of Hadamard's 
theorem, see e.g., Berger [3, (5.1.5)], which allows us to linearize Eq. (1.1), and 
essentially by showing that the spectrum of the operator B: LP (0, oo) -? LP (0, oo) 
defined by 

rt 

(1.3) Bx(t) = j b(t - s)a(s)x(s) ds, t > 0, 

where a E L?(0,oo), b E L1(0,oo), and b(t) = O(t-0-1) for t -? oo, is virtually 
the same for all LP spaces. We prove that the LOO-spectrum is contained in the 
L2-spectrum. This last result would appear to be of independent interest. The 
error estimates, both in L2 and LOO, presuppose that the solution x(t) is smooth 
everywhere. Since typically the solution is not smooth near t = 0, even (especially) 
when y is smooth, the full power of the Galerkin methods shows only when A is 
large (since x is effectively nonsmooth only on an interval [0, a] where a is of the 
order A-i/a), or when A is small and singularity subtraction is used, as in [11]. The 
alternative is of course to use variable mesh widths as proposed by Brunner [4]. 

Equations of type (1) arise mostly in connection with parabolic differential equa- 
tions, see Cannon [7] for references, but also in wave propagation phenomena when 
parabolic approximations are appropriate, see, e.g., Hufford [13], Mei and Tuck [20]. 
For numerical illustration we use the equation from Paveri-Fontana and Rigacci [22], 

(1.4) x(t)+Aj (t-s)-1/2 1( d) ds= 1, t > 0, 
1- Ox(s) 

where A > 0 and 0 E [0,1). Here, A acts as a time scale parameter, and 0 acts as a 
stiffness parameter. 

The material in this paper has been discussed by Nevanlinna [21], in the L2 
setting, for the trapezoidal product integration method. Related work is done 
in Lubich [18]. Work by Kershaw [14] is only concerned with a finite interval 
(without the first part of conditions (1.2)). For a thorough discussion of Runge- 
Kutta methods for monotone (Abel) Volterra equations, see Brunner and van der 
Houwen [5]. Our approach here is based on work by Kolodner [15] on Hammerstein 
equations in Hilbert space setting. For the trapezoidal method for Eq. (1.1), this 
theory can be applied with minor modifications to obtain LOO error estimates, see 
[9], but the argument cannot be extended to treat the general Galerkin scheme. 
It appears our approach here would also provide for uniform error estimates for 
Lubich's "fractional" methods [17] applied to nonlinear equations of the above 
type. 

We give a brief outline of the remainder of this paper. In Section 2 we describe 
the Galerkin equations. The L2 theory of the original equation and the Galerkin 
equations follows in Section 3. In Section 4 we prove the statement about the 
spectrum of the operator B defined in (1.3). In effect, we prove that the statement 
holds uniformly in a E L??(O,oo), IIaIILOO(0,oo) < M. In Section 5 we apply this 
to obtain the LOO theory from the L2 theory. The error estimates then follow in 
Section 6, with numerical illustrations in Section 7. The Appendix is devoted to 
proving that the discrete Galerkin equations satisfy the conditions of the discrete 
"spectrum theorem". 
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We conclude this section with some notations. The set of complex numbers is 
denoted by C. We set R+ = [0, oo), and let LP(R+), 1 < p < xo, denote the Banach 
space of (equivalence classes of) measurable functions on R+, the pth powers of 
which are Lebesgue integrable with norm 

(1.5) lif IILP(R+)= { If(x)1Pdx} 

For p = oo this should be interpreted as 

(1.6) IlfIILOO(R+) = esssup{jf(x)j: x E R+}. 

If T is a bounded linear operator on LI (R+), we define its norm as 

(1.7) 1ITIILP(R+) = sup{IlTXIILP(R+): IIXIILP(R+) = 1}. 

We let IP denote the Banach space of all infinite sequences of vectors in CP+1, 
the pth power of which are summable, with norm 

o 0 P A /P 

(1.8) llxlllp = { lXiqIP}, 1 p < o, 
i=o q=o 

and for p = oo 

(1.9) IIXllIio = sup{lXiql: i > 0, 0 < q < P}. 

Equivalent norms, used interchangeably, are 
00 oo A/p 

(1.10) llxlllp = E ll illp < p < xc, 

llxllloo = supfllxill: i > 0}, 
where jj is any vector norm on CP+1. When T is a bounded linear operator on 
IP, its norm ItTtIIP is defined analogously to (1.7). 

In L2(R+), 12 and CP+1 we define inner products by 

(X, Y)L2(R+) = j x(t)y(t)dt for x,y EL2(R+), 
00 

(1.11) (x, y)2 = E(xi, Yi)CP+, for x, yE 12, 
i=o 

p 

(x, Y)cP+1 = Exqyq for x, y E CP+1. 
q=O 

Here the overhead bar denotes complex conjugation. 
We let CP(R+) denote the Banach space of all bounded functions on R+ with 

bounded derivatives up to order p and norm 

(1.12) IIXIICP(R+) =E 
aix 

Similarly, CP(RF+ x C) denotes the space of all functions bounded on R+ x C, with 
continuous and bounded (real) partial derivatives up to order p and norm 

(1.13) IIXIICP(R+ XC)= ZSUP{| ijk+l+mx(r t + is) t (+iS) E 1R+xC 
wtrk9tds (r, +iatl) i k wjm 

where the summation is over all nonnegative integers k, 1, m with k + I + m < p. 
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Finally, we write Eq. (1.1) as x + AAG(x) = y where A is the Abel transform 
t 

(1.14) Ax(t) = f(t - s)'-ix(s) ds, t > 0, 

and 

(1.15) Gx(t) = g(t,x(t)), t > 0. 

Later on we have occasion to consider g(t, ) as a map from C into C, for each t. 
We work out what the derivative map is. We write -I(t, a, r) = g(t, or + ir) and 

at = 'Yl + i'2 where Yi and -Y2 are real-valued, and define the linear transformation 

g'(t, x) of C (considered as a real two-dimensional vector space) by 

(1.16) g'(t,x)h=h hi2 +h2 7k+i (hi ? +h2r9'2 

where h = h1 +ih2 with h1 and h2 real, and x = a+ir. Here the partial derivatives 
are evaluated at (t, x). We assume that uniformly in t 

(1.17) 1g(t, z1) - g(t, z2) - g'(t, Z2)(zl - z2)1 = o(Iz1 - z21), 

and so g'(t, x) is the Frechet derivative of g(t, x). As an application we have that 

(1.18) Re(zi - z2)(g(t, z1) - g(t, Z2)) = Re(z1 - z2)9'(t, Z3)(z1 - Z2) 

where Z3 is some point on the line segment [zl, Z2] = {tzl + (1 - t)z2: 0 < t < 1}, 
and 

(1.19) 9g(t,zi) - g(t, z2)1 < sup Ig'(t, z)IIzl - z21 

with the supremum over z E [z1, Z2], see, e.g., Berger [3, (2.1.19)]. Here, 

(1.20) Ig'(t, z)l = sup{jg'(t, z)>J: ( E C, 141 = 1}. 

It follows from (1.2) and (1.17), (1.19) that for all E E C, ( $ 0, we have 

(g'(t, x)()/( E E with 

(1.21) = { E C: Re? > 6, 11 <D}. 

2. The Galerkin Methods. Let P be a nonnegative integer, which is arbitrary 
but fixed. Let h > 0 be the mesh width parameter, let ai = [ih, (i + 1)h) for i > 0 
be the subintervals of the resulting partition of R+, and let Sp(h) be the space of 
bounded, piecewise polynomial functions of degree < P on this partition, 

(2.1) Sp(h) = {x E L'(R+): xi,, E Pp, for all i > 0}. 

Here Pp is the set of all polynomials of degree < P. We choose the usual "basis" in 
Sp(h) as follows. Let 0 < uo < ul < < up < 1, and let lq(t) be the fundamental 
Lagrange interpolating polynomials 

(2.2) lq (t)7 tUr 

r=0 Uq - Ur 
r$q 

and set 

(2.3) lj (t) 
l 

{q(tlh-i), t hEris 
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Then every x E Sp(h) may be written as 

oo P 

(2.4) x(t) = E E x(tiq)liq(t), 
j=Q q=O 

where tiq = (i + uq)h. If Uq = 0 or 1, then right resp. left limits must be taken for 
x(tiq). Note that the infinite series in (2.4) reduces to a finite sum for every t, so 
there are no convergence problems. 

It is natural to define the sampling and interpolating operators rh and Ph by 

(2.5) {x-(xo),x (Z,I X) j, *X(t)p))T 

and 
oo P 

(2.6) phrhx(t) = 2 x(tiq)liq (t) 
i=O q=O 

for every x E Sp(h) U C(R+). 
The Galerkin methods under consideration are embodied by the following system 

of equations: 

(2.7) { (liq, Xh + AAG(Xh)) = (liq, y) for all i, q, 

(2.7) ~~Xh E Sp (h), 
which we immediately replace by its fully discretized version 

(2.8) (liq Xh + AAPhrhG(Xh)) = (liq, Y) for all i, q, 

XhE Sp(h). 
Here (,.) is the L2 inner product on R+. In the sequel, when we refer to the 
Galerkin approximation scheme or the Galerkin approximant Xh, this pertains to 
system (2.8) and its solution xh (assuming it exists). 

In the remainder of this paper we consider the following questions: Do the 
systems (2.8) have unique solutions Xh E LOO(R+) whenever y E LOO(R+), and do 
they depend continuously on y? How well do the xh approximate the solution x(t) 
of the system (1.1)? We obtain completely satisfactory answers to these questions. 

For numerical and analytical purposes we elucidate the structure of the system 
(2.8). When y is a smooth function, which we will assume from now on, we may 
approximate (2.8) as 

(2.9) Lrhxh + AhaAG(rhXh) = LrhY, 

where G(rhxh) = rhG(xh), and L and A are block matrices with blocks Lij, Aij E 
R(P+1)x(P+1), and Lijqr = h-'(liq, ljr)L2(R+), 

(2.10) Aijqr = f lq(t) f(i + Uq - 8)7'+ lr(s) ds dt = (ai-j)qqr 

Here (t)+-1 = 0 for t < 0 and = t-1 for t > 0. Note that L and A are independent 
of h, that L is block diagonal, and that A is block semicirculant, i.e., Aij depends 
only on i - j and vanishes for j > i. Consequently, the system (2.9) is a block 
triangular system of nonlinear equations and can be solved by back substitution, 
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at each stage of which a (P + 1) x (P + 1) system of nonlinear equations needs to 
be solved. 

As an added simplification, both analytically and computationally, we assume 
that the uq, q = 0,1 ... , P, are the Gauss points for the interval [0, 1], in which 
case L is a diagonal matrix, with 

(2.11) Liiqq W wq, q = 0,1, .. ., P, 

where the wq are the Gaussian weights for the interval (0,1). 
Since L-1 is symmetric and positive definite, whether L is diagonal or not, it 

has a unique symmetric and positive definite square root, which we denote by M, 

(2.12) M = L- 

3. The L2 Setting. In this section we collect some results on the solvability of 
Eq. (1.1) and the Galerkin equations in the L2 setting. This will be the stepping 
stone to the LOO theory. 

The first point of concern is the fact that the Abel transform A is not bounded 
on L2(R+). However we have 

LEMMA 3.1. For all A E C with IargAl < (1 - a)7r/2, the operator AA is 
maximally monotone, i.e., 

(i) Re(x, AAx)L2(R+) > 0 for all x E DA, the domain of A; 
(ii) Range(I + AA) = LI (R-+); 

and (I + AA)-' is a bounded operator on L2(R+), and 

(3.1) II(I + AA)-A1IL2(R+) < 1, IIA(I + A)-'AIIL2(R+) < 1. 

Remark. Strictly speaking, jjA(I + AA)-'AxIIL2(R+) < IIXIIL2(R?+ only for x E 
DA. Since for such x we have A(I + AA)-1Ax = x - (I + AA)1x, we can extend 
A(I + AA)-1A to all of L2(R+) in this manner. 

Proof of Lemma 3.1. We give an informal proof of (i), also showing that DA, 
the domain of A, is dense in L 2(R+). By Plancherel's relation, for x E DA, 

(x,Ax)L2(R+) = (27r)l(x' (Ax)4)L2(R), 

where x is the Fourier transform of x, 

x(W) = j x(t)e-iwt dt. 

Since Ax is a convolution, we have (Ax)^(w) = &(w)x(w) with 

(3.2) a(w) = j t-le-iWt dt = r(a)(i) 

where the principal value of the power function is used. Consequently, we have 
arg((iw)a- ) = -signum(w)ira/2, and from 

(X, Ax)L2(R+) = (2ir)-1r(a) J Ix(w)I2(iw)_ dw 

it follows that for x E DA, 

(3.3) 1 arg(x, AX)L2(R+) I < ira/2 
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and (i) follows. The same informal argument shows that DA is dense in L2 (R+): 
approximate x E L2(R+) by xg, e > 0, defined by x(w) = x(w) for IWI > e and = 0 
otherwise. Then a(w)x(w) = (Ax,)`(w) is an element of L2(R+), and so x, E DA. 
Also, again by Plancherel's relation, 

lix-|X-ll12(R+) = | Z- eL2(R) = (27r) f IZ(W)12 dw -? 0 as e - 0. 

Thus, DA is dense in L 2(R+). The above arguments can easily be made rigorous, 
but we do not do so here. 

From (i) it now follows that for all x E DA, 

(3.4) Re(x,x + AAX)L2(R+) ? IIXIL2 (R+) 

which implies that (I+AA)-1 is bounded on range(I+AA), and that range(I+AA) 
is closed in L2(R+). Since DA is dense in L2(R+), inequality (3.4) then shows that 
range(I + AA) = L2(1R+). (Otherwise, an x E L2(R+), x : 0, would exist which is 
orthogonal to range(I + AA), violating (3.4).) So now (I + AA)-1 is bounded on 
L2(R+). The inequalities (3.1) are then easy consequences. Ol 

We now discuss the solution of Eq. (1.1), following Kolodner [15]. With the help 
of Lemma 3.1 we see that Eq. (1.1) is equivalent (see also the Remark following 
Corollary 3.3) to the equation 

(3.5) x + Av(I + AvA)-1AG,(x) = (I + AvA)-ly, 

where v > 0 is an arbitrary real constant, and 

(3.6) G,(x) = (G(x) - vx)/v. 

The constant v can be chosen such that G. is a strong contraction as follows. In 
view of (1.15)-(1.20) we write 

I[Gv (xi)](t) - [Gv (x2)](t)I < sup I[G' (X)](t) I Ix(t) - x2(t)I, a.e. t, 
where 

(3.7) [G' (x)] (t) = v1 (g' (t, x (t) - vI), 

in which I is the identity map on C. Now recall that for all z, E E C with ( $ 0 we 
have (g'(t, x)()/( E E. Since E lies in the halfplane Re f > 6, we can find a circle 
in the halfplane Re f > 6/2 with center on the real line such that E lies inside this 
circle. This says that for some v > 0 (large enough) we have 

1k-vI<v-6/2 forallEES. 

Consequently, for all z, ( E C, ( 5 0, 

I(g'(t, x)> - v>)/I? < v - 6/2. 

It follows that for almost every t, and every x E L2(R+), 
I[G' (x)](t)l = sup I[G' (x)](t) I < 1 - 6/2v. 

11=1 

We now see that the operator Av(I + AvA)-1AG, is a strong contraction, with 
contraction constant 1 - 6/2v. By the Banach contraction principle, the solution 
of (3.5) exists. Moreover, if xi is the solution corresponding to y', then the above 
shows that 

(3.8) 11x1 - x 2IIL2(gR+) < 2/611y -Y IL2(gR+), 
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so that the solution x depends Lipschitz continuously on y. We have thus proven: 

THEOREM 3.2. With A, G as in (1.1), the equation 

x+AAG(x) =y 

has a unique solution x E L2(R+) for every y E L2(R+), and the solution depends 
Lipschitz continuously on y. 

We also have the 

COROLLARY 3.3. With A, G as in (1.1) and G, given by (3.6), and for v > 0 
large enough but fixed, and for all z E L2(R+), there holds 

II[I + Av(I + AvA)-1AG' (z)]1 IL2(R+) ? WY' 

where Iy is independent of A or z. 

It should be remarked that the corollary still holds for all measurable functions 
z, e.g., for all z E L?c(R+). 

Remark. It is clear that if x is a solution of (1.1), then it also solves (3.5). That 
the converse also holds can be seen as follows. The fact that G(x) = v(x + G.,(x)) 
and G,,(x) is a strong contraction implies that G is an isomorphism of L2(R+). It 
follows that if x E L2 (R+) is a solution of (3.5) in the sense that 

x + [I - (I + AvA)-1]G,(x) = (I + AvA)-1y, 

then 
G(x) = v(I + AvA)-1(y + G,(x)). 

Since G,(x) E L2(R+), this implies that G(x) E DA, and then it follows that x 
solves (1.1) as well. So Eqs. (1.1) and (3.5) are indeed equivalent. 

The above goes through for the Galerkin equations in essentially the same man- 
ner as for the continuous equation (1.1). Again we must worry first about the 
nonboundedness of A on 12. 

LEMMA 3.4. For all u E (C with Iarg,ul < (1 - a)ir/2, the operator uA is 
maximally monotone on 12, i. e., 

(i) Re(x, uAx)12 > 0 for all x E DA; 
(ii) Range(L + uA) = 12; 

and (L + ,uA)-1 is a bounded operator on 12, and 

(3.9) II(I + MMAM)- 11112 < 1, (I + uMAM) MAMJ12 < 1, 

where M = L- 1/2, see (2.12). 

Proof. Again the crucial point is to establish (i), as well as the fact that DA is 
dense in 12. 

Let h > 0, and let x E DA; then 

he'+l (x,, Ax)12 = (phX, MAPhX)L2(R+)i 

so by Lemma 3.1(i), part (i) of Lemma 3.4 follows. To show that DA is dense in 
12, let x E 12 and define x,, ? > 0, by the requirement that 

io 0 for - - 
(3.10) X,(e) X(ei) for ? < q01 < x, 
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where 
00 

(3.11) X(e') = X ne 
n=o 

Then by Parseval's relation, 
P1r 

(3.12) IjAx, 111 = (27r)' f II&(eix)ze(eix)jj2 dq, 
_r 

where 11 jj is the Euclidean norm on CP+?, and a(eik) has coefficients an, see 
(2.10). It is easy to show that a(eio) is bounded on E < 1X1 < ir, thus Ax, E 12. 

Also jjx - x,1112 -O 0 for e -O 0, so that DA is dense in 12. 

From (i) it follows that 

Re(x, x + ,MAMx)12 ? 1x2 

and so, as in the proof of Lemma 3.1, range(I + ,uMAM) = 12, and the estimates 
(3.9) follow. But now L+,uA = M-1 (I+,uMAM)M-1, and so range(L+,uA) - 12. 

This is part (ii) of the lemma. 0 

THEOREM 3.5. With A,G as in (1.1), the equation 

Lx + Ah'AG(x) = y 

has a unique solution x E 12 for every y E 12, and the solution x depends Lipschitz 
continuously on y in the 12 topology. 

Proof. Let ,u = Ah'. The equation 

Lx + ,AG(x) = y 

is equivalent to 

(3.13) z + ,uBH(z) = My, 

where B = MAM and H(z) = M-'G(Mz). Then, using Lemma 3.4, Eq. (3.13) is 
equivalent to 

(3.14) z + ,uv(I + ,uB)-'BH,(z) = (I + pvB)-'y 

for v > 0, where 

(3.15) H,,(z) = (M-'G(Mz) - vz)/v. 

Note that the Fr6chet derivative of H(z) equals H'(z) = M-'G'(Mz)M. Since for 
x,y E 12 

[G'(x)y]iq = g'(tiq,xiq)yiq for all i,q, 

and since M is a diagonal matrix, we thus have that H'(z) = G'(Mz). The proof 
now proceeds as in the proof of Theorem 3.2, and is omitted. 0 

COROLLARY 3.6. Let A,G be as in (1.1) and let H, be given by (3.15) with 
v > 0 large enough. Then there exists a constant ^I such that for all h > 0 and for 
all z E 12, 

e =[I + BVMA a(Z)]M M a12 < 

Here, itb = Ah', B ,v = PVl[I + ,uvMAMI -'MAM, and M = L- 1/2, cf. (2.12). 
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The next step in the program is to repeat the above analysis for the LI setting. 
This cannot be done in an analogous manner, since the crucial inequalities (3.1) 
and (3.9) do not hold for LOO(R+) and 1??. In particular, the inequality 

IIA(I + AA)-1AllLo(R+) < 1 

fails for nonreal A, even with I arg Al < (1 - a)7r/2. One redeeming feature is that 
the operator B, defined by 

(3.16) B, = A(I + AA)-1A 

is a convolution operator with L1 kernel, Kershaw [14], 
t 

(3.17) B,x(t) = / bA(t - s)x(s) ds, t > 0, 

with 

(3.18) bA (t) = d E.x (-Ar(d) )} 

where E. (z) is the Mittag-Leffler function, Erdelyi [12, Chapter 18]. Then we may 
write 

(3.19) b (t) = uBQ(t) 

with u = A1/(, and 

(3.20) B(t) = d E,, (-r(a)tc,)} = O(t--i), t -* oo. 

It should be noted that the fact that bA E L1 (R+) is actually closely related to the 
monotonicity of A, see, e.g., Londen [16]. 

In the next section we investigate the spectra of the operators BAG'(z) in the 
L? space, and then apply these results to obtain information about Eq. (1.1) in 
the L? setting. 

4. On Convolution-Like Operators. Let b E L1(R) and e E C(R) with 
e(O) = 0. We consider the class F(b, e) of measurable functions k on R2 for which 
there exists a positive constant ,u such that 

(4.1) Ik(t, s)l ? ,ub(,u(t - s)) a.e. t, s E R, 

and 

(4.2) sup I k(t + h, s) - k(t, s) I ds < e(,h). 
t -oo 

Note that if k(t,s) = b(t - s)a(s) for a E LOO(R), llallL-(R) < 1, then (4.1), 
(4.2) are satisfied for a suitable function e. With minor reinterpretations, this also 
covers the case where k takes on values in the set of all linear transformations of C 
(considered as a two-dimensional vector space over the reals). We will not further 
elaborate this point. 

Let Q denote either R or R+. Then k generates an integral operator K defined 
by 

(4.3) Kx(t) = f k(t, s)x(s) ds, t E Q, 
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which by virtue of Young's inequality, Stein and Weiss [23], maps any LP (() into 
itself for 1 < p < oo, and for all x E LP(2) we have 

(4.4) |JKxJJLP(Q) < JJb1JL1 (R) IIXIILP(Q) @ 

For Q = R+ the operator K is either a Volterra operator or a Wiener-Hopf type 
operator, depending on whether k(t, s) = 0 for all s > t or not. 

The class of operators K given by (4.3) for which (4.1), (4.2) holds for some 
,u > 0 is also denoted by F (b, e). For such operators we may define the spectrum 
with respect to LP(R) in the usual way by 

(4.5) ap(K) = {A E C: AI - K has no bounded inverse on LP(R) 

and the resolvent set by pp (K) = C\ap (K). We are interested in obtaining L? 
existence theorems from the L2 theory, so we would like to show that a2(K) = 

aO0 (K). But the prospective application of Hadamard's theorem to obtain the 
solvability of nonlinear equations forces us to consider families of such operators, 
so we need a slightly stronger result. To prove the following theorem we need the 
additional assumption 

(4.6) b(t) = O(jtj-0'-1), t -+ ?00 

for some a > 0. We conjecture that the theorem is true without this condition, i.e., 
that "just" b E L' (R) is sufficient. 

THEOREM 4.1. Let E c F(b, e) and let A E C. If A E P2(K) for all K E E and 

(4.7) sup 11 (AI - K)-1 IIL2(Q) < 00, 

then A E poo(K) for all K E E and 

(4.8) sup 11(AI-K)-1 |IL?(Q) < 00. 

The suprema in (4.7) and (4.8) are taken over all K E E. 

The proof of Theorem 4.1 is broken up into two parts. First we consider the 
boundedness aspects, and then the invertibility, even if this seems to be the wrong 
way around. 

LEMMA 4.2. Let E C F(b, e) and A E C. If there exists a constant c > 0 such 
that for all K E E, 

(4.9) II(AI - K)xIIL2(Q) > CIIXIIL2(Q) 

for all x E L2(f2), then likewise 

(4.10) II(AI - K)xIILO(Q) > CjIIXIILoo(Q) 

for some constant c1 > 0 and for all K E E and x E L??(Q). 

LEMMA 4.3. Let K E F(b,e); then 

P2(K) c poo(K). 

Proving the equality of the resolvent sets turns out to be more involved. Fortu- 
nately, we do not need equality. We are now ready for the proof. 
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Proof of Theorem 4.1. Evidently, (4.7) implies (4.9), and so by Lemma 4.2 
we obtain (4.10). From Lemma 4.3 we obtain that A E poo(K) for all K E 
E, and thus AI - K is invertible on L??(Q). Combined with (4.10), this gives 

II(AI - K)-1IILOO(Q) < cj71 for all K E E, which is (4.8). O 
We now prove Lemma 4.2. We will actually use Lemma 4.2 in the proof of Lemma 

4.3, so we really do consider the boundedness before the invertibility aspects. 
Proof of Lemma 4.2. As a first step in the proof we note that the "free" parameter 

,u in (4.1), (4.2) acts in essence as a time scale parameter, but time scaling does 
not affect norms or spectra, i.e., if K E F(b, e), define k, by 

k, (t, s) = vk(vt, vs), t, s E R, 

and define K, as in (4.3). Then ap(K) = ap(K,), and for A 0 up(K), 

II (AI - K)-1 IILP(Q) = II(AI -K) K 1 ILP(Q)X 

for all 1 < p < oo. It thus suffices to prove the theorem for subsets E of F(b, e) for 
which (4.1), (4.2) holds for , = 1. 

Secondly, we note that neither (4.9) nor (4.10) can hold for A = 0. We may thus 
assume that A $ 0. 

Suppose that (4.10) does not hold. Then there exist sequences {Kn} c E and 
{xn } C L??(Q) with IIXnJLOO(Q) = 1 such that 

(4.11) IlAxn - KnxnllL-(Q) = 0(n 2), n -+ oc. 

We are now going to construct functions an E L2(Q) such that IIanxnIIL2(Q) is 

bounded away from 0 and {Aanxn - Knanxn}n is a null sequence in L2((Q). It then 
follows that (4.9) does not hold, and the lemma is proved. 

First observe that from (4.2) for all n and for all t E Q, 

(4.12) lKnxn(t + h) - Knxn(t)I < e(h), 

so that each Knxn is uniformly continuous on Q, uniformly in n. Note that (4.11) 
implies that 

IIKnxnJJLoo(Q) > Al -0(n 2) 

so that lJKnxnJlLoo(n) is bounded away from zero for large n. Now choose tn E Q 
such that JKnxn(tn)l > 21A1, and choose d > 0 such that for all t E Q with 

It - tnl < d, 
JKnXn (t)I| > 2 JAI. 

Note that d can be chosen independent of n. Then again (4.11) implies that for n 
large enough 

IXn(t)J > 3,a.e. t E Q, It -tnl < d. 

Now define an E L2(Q2) by 

It - tnlVV(l?ci)/2 (4.13) an(t) = (1 + n l t E Q. 

Observe that 

IIanIlIL2(Q) < | (1+ n -ce dt =2 
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so that from (4.11) 

(4.14) 1Aanxn - anfKnfxnfL2(Q) = 0(n 3/2)1 

and also note that for all n large enough 

(4.15 | 2 
(Q) 

> | d [3an(t)]d 

where d* is some positive constant. From (4.14) and (4.15) we finally get that 

(4.16) IlAanxn - 
al2Klxf0l3L2(2) -) 

IIalaxf||IL2 (Q) 

Now SUPPOSE that for all x E L??(Q), 

(4.17) lianKnx - KnanxIIL2(Q) < BnlIanxIIL2(Q), 

where Bn -+ 0 as n -+ oo; then (4.16) implies that 

IIAanXn - KnanXnfI|L2(Q) 0. 

l|anXn ||L2 (Q) 

It follows that (4.9) does not hold, and the lemma is proved. So it all comes down 
to proving (4.17). 

Observe that anKnx - Knanx = (anKna-j - Kn)anx, and that for z E L2(Q), 

f ~~~~~~~ ~2 

(4.18) II(anKna-j - Kn)z2(Q) =] ]| kn (t, s) ln (t, s)z(s) ds dt, 

and so, using Cauchy-Schwarz, we may estimate this as 

(4.19) M b(t - s)Iln(t, s) 12- IZ(S) 12 ds dt 

with 

M = sup b(t - s)lln(t, s)I? ds, 

where a = a/(a + 1) and 

I (t,s) - a (t) -1 

Writing this out, we have 

l ln (ti s) I = n (+ Ilt-tnl) -1| 

and since f(x) = X(I+,)12 is Lipschitz continuous of order (1 + a)/2, provided 
(1 + a)/2 < 1, we see that 

IS- tl- It - tnl (1+ci)/2 It-8 (+,/ 

lln(t,5)l < C| l|tt| < cl_1(+t/ 

Now we get that 

M < cin-B/2i b(t)rtIv/2vdt. 

Bv (4.6) the integral converges, thus M = 0(n- a/2). 
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Applying Fubini's Theorem to (4.19), we may interchange the order of integration 
and estimate to obtain 

(4.20) f Iz(s)2llan(S) 1,-2 b(t - s)[Ian(t)12- + Ian(s) I"] dtds. 

Consequently, if we can show that for some constant c 

(4.21) f b(t - s) Ian (t) 12- dt < clan (s)12-, 

for all s, then the whole inner integral can be estimated like this, and the integral 
(4.20) can be estimated as CIIZI1L2(,) for some suitable constant c, and (4.17) follows. 
To prove (4.21), observe that we may take Q = R and that it suffices to prove 
it for s > 0. Also, it suffices to prove (4.21) with an(t) replaced by An(t) = 
(1 + ItI/n)i1 +)/2, i.e., we suppose here that all tn = 0, see (4.13). We split the 
integral in (4.21) according to R = (-oo, s/2) U [s/2, oo). Now, since s > 0 and 
An (t) is decreasing for t > 0, 

(4.22) f b(t -s) IAn(t)12- dt < IAn(s/2) 12- f b(t - s) ds 

< clAn (S) 12-C 

for a suitable constant c independent of s and n. Also, by (4.6), for s > n 

s/2 Poo 

(4.23) ] b(t - s)IAn(t) 12 dt < cs-8-1] IAn (t)12- dt 

< cis-ei-In, 

and one verifies that for all n and all s > n, 

(4.24) ns- n- ) < cn-(1 ) 

and this is less than cn-O'lAn(8)12 < cn- lAn(s)I2-a. For 0 < s < n it suffices to 
observe that 

f b(t - s) An(t) 12 dt < IIbIIL1(R) . 
-00 

Now (4.22)-(4.24) establish (4.21), and we are done. 0 

Proof of Lemma 4.3. Let A E p2(K) and set c = II(AI - K)-'IIL2(Q). Let K 
have kernel k(t, s). For n E N define the operator Kn as having the kernel kn (t, 8) 
defined by 

(4.25) kn(t,8) s 0, if It - sl > n or Ik(t, s)I > n, 
k(t, s), otherwise. 

Then for n large enough, IlK - KnIlLP(Q) < 1/2c for all 1 < p < oo, so that by 
the Banach contraction theorem, AI - Kn = (AI - K) [I + (AI - K)-1 (K - Kn)] is 
invertible on L2(Q2) and 11(AI-Kn)YIIL2(n) < 2c. Let Ln be the integral operator 
on L2(Q2) defined by 

A-'I+Ln = (AI-Kn)1 

Now consider the operator Kn, defined by 

(4.26) kn (t, 8) = e6(t-8)kn(t, s) all t, s. 
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It follows that there exists an En such that for all lEt < En we have 

IlKn - KnelILP(Q) < 1/4c, 

for all p, 1 < p < oo. For example, for n large enough, En = n-2 would work. 
As before, AI - Kn, is invertible on L2(Q), and tt(AI - Kne)'ljlL2(n) < 4c. If we 
define Lne by 

(4.27) A-'I + Lne = (AI -Kn,) 

then the relationship between its kernel In (t, s) and the kernel In (t, 3) of Ln is, cf. 
(4.26), 

(4.28) In(t, s) = e E(t 8) n(t, s) all t, s. 

The equation for In (t, s) is, using Fubini's theorem, 

(4.29) ln,(t, 3) - A-' kn,(t, r)lIn(r, s) dr = A -2kne(t, 3), 

from which it follows that for a.e. s, using (4.25-26) in the last inequality, 

I11n,( ,S)|IL2(n) < 4cA1 11kn&, S) ||L2(n) < 4cA-'nel6vl2n4. 

Taking it one step further, we get that 

I kn (t, r) lne(r, s) dr |< || kn,(t, ') Ll2 (Q) l llne(- S) L2 (Q) < 8cA -l n3e2 1elnX 

and thus from (4.29) we see that there exists a c(n) such that 

llne(t, s) < c(n) all t, s. 

We then obtain from (4.28) that 

lln (t, s) I < c(n)CO-3-) . 

Now taking E = En and E = -En, we get 

l ln (t, s) I < c (n)e-En1 It-sl 

It follows that A-' I+ Ln is also a bounded operator on LI (Q), and then also that 
A'1I + Ln = (AI - Kn)' on LI?(Q). This holds for all n large enough. 

Now for A E p2(K) we have (I(AI - K)x11L2(o) > C 11X11L2(n), and thus also for 
all n large enough 

(((AI-Kn)XIIL2(n) > 2 yIXlL2(n)j 

for all x E L2(Q). Now if K E F(b, e), then also Kn E F(b, e) for all n, so that by 
Lemma 4.2, 

(((AI - Kn))X(L-(n) > Cl IIXIILoO(n) 

for some constant cl, and for all x E L??(Q). Since we have shown above that 
Al - Kn is invertible on L? (Q) for all n large enough, we thus conclude that 

sup (((AI-KKn)-'(tLo(Q) < C1 
n 

The Banach contraction theorem applied to 

AI - K = (AI - Kn)[I - (AI - Kn)(K -Kn)] 

then finally gives us that AI - K is invertible on L? (Q). So A E po (K). O 
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Finally, we state the discrete version of Theorem 4.1, which is in effect a dis- 
cretized version. Let b E L1 (R) and e E C(R) with e(O) = 0, as before. Let k be a 
bounded function on Z2 for which for some ,u > 0 

m-n+ 1 

(4.30) jk(m,n)I < If b(ut))dt, 

and 

(4.31) sup E Ik(m + 1, n) - k(m, n)I < e(lu). 
m nEZ 

Let =Z+ or Z. The kernel k generates an operator K by 

(4.32) Kx(m) = E k(m,n)xn, mE E , 
nEQ 

which is a bounded operator acting on IP(Q), 1 < p < o0, and 

(4.33) IlKxlllp(n) < jjbjjL1 (R) IIXjj1P(Q) . 

The collection of operators K for which (4.30), (4.31) holds for some ,u > 0 is 
denoted by ((b, e). 

THEOREM 4.4. Let E C 4P(b, e) and let A E C. If A E p2(K) for all K E E and 

sup 11(AI - K) 12I2(Q) < 00 

then A E po (K) for all K E E and 

sup 11 (AI -K) [ll1O (Q) < o00. 

The proof is analogous to that of Theorem 4.1. The only difference is the fact 
that we cannot set ,u = 1 in (4.30), (4.31), so we have to consider the ,ln for each 
Kn as well. We omit the details. 

5. The LI Setting. We are now going to apply Theorem 4.1 to the study of 
Eq. (1.1) in the LI setting. 

As in Section 3, we write Eq. (1.1) in LI (R+) as 

(5.1) x + BA,,Gi,(x) = (I + AvA)-1y, 

with 

(5.2) B,\, = Av(I + AvA)-1A, G,,(x) = (G(x) - vx)/v, 

where v > 0 is so large that G,, is a strong contraction. Here we use (3.17)-(3.20) 
to establish the boundedness of the operators B,A,, and (I + AvA)-1 = I -B,,,. 
Now the Kolodner theory cannot be applied, since in general we do not have that 

IIBAv IILoo(R+) < 1. 

However, the solvability of (5.1) can be studied by means of Hadamard's theorem, 
Berger [3, (5.1.5)]. For convenience we state the version we use here. 
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HADAMARD'S THEOREM. Let X and Y be Banach spaces. Suppose that f E 
C'(X,Y) is a local homeomorphism, and let ?(R) = infjjX11<R(jj[f'(x)]111jK1). If 

fl7 g(R) dR = oo, then f is a homeomorphism of X onto Y. In particular, if 

sup{f j[f'(x)] 1 I: x E X} < oo, then f is a homeomorphism of X onto Y. 

The derivative is taken in the sense of Frechet. Observe that the condition 
sup II[f'(x)]'-II < oo by itself implies (by the implicit function theorem) that f is a 
local homeomorphism. The next lemma says that Hadamard's Theorem can indeed 
be applied, with f(x) = x + BA,G,(x). 

LEMMA 5.1. Let A, G be as in (1.1). Then there exists a constant -y such that 
for all z E L'(R+), 

lt[I + Bxv G' (z)]P IIL?(R+) <a. 

Before proving this, we note 

THEOREM 5.2. Let A,G be as in (1.1). Then the equation x + AAG(x) = y 
has a unique solution x E L??(R+) for every y E LOO(R+), and x depends Lipschitz 
continuously on y in the L?' topology. 

Proof. It suffices to ascertain the solvability of Eq. (5.1) for every y E LOO(R+). 
The Frechet derivative of the operator x -* x + BA,G,,(x) is the linear operator 
I + B,\1,G' (x), where G' (x) is the operator defined by (3.7). Now Lemma 5.1 tells 

us that the Frechet derivatives have bounded inverses, uniformly in x E L?'(R+). 
Then Hadamard's theorem gives us the unique solvability of Eq. (5.1). Moreover, 
if xi corresponds to yi in Eq. (5.1), then by a standard argument, cf. Berger [3, 
(5.1.5)], we obtain that 

(5.3) |x 2_x; IILOO(R+) < Cllyl _ y2lIL-(R+)i 

where 

c = qjj[I + AvA] 'llLL(R+). 

Inequality (5.3) establishes the Lipschitz continuous dependence of x on y. 3 

Proof of Lemma 5.1. We want to apply Theorem 4.1, so we need to show that 
our operators BA\,G' (z) form a subset E of some F(b, e). Note that 

(5.4) [BA\G' (z)x](t) = j kz(t, s)x(s) ds, 

where 

(5.5) kz(t, s) = b,v(t - s)(g'(s, z(s)) -v)/ v 

and thus, since G' (z) is a contraction, 

(5.6) lkz(t, s)j ? lbAv (t - s)j 

and also 

(5.7) sup lkz(t + h, s) -kz(t, s)I ds < IbAv(h + t)- bv(t)I dt. 
t _0 -oo 

We may denote the right-hand side of (5.7) by e(Avhl), where e is independent of 

A, v and h. The inequalities (5.6), (5.7) show that the set E, 

E = {BA\Gl (z): z E LOO (R+), A E C, I arg Al < (1 - a)-x/21, 
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is a subset of F(Ibb,I, 1, e). Now Corollary 3.3 tells us that 

suP II(I + K)-1IIL2(R+) < 00, 
KEE 

and so Theorem 4.1 allows us to conclude that 

sup II(I + K)Y1IILO(R+) < 00. 
KEE 

The application of Theorem 4.1 is justified by (3.19)-(3.20). So the lemma is 
proved. 0 

The beauty of the above approach is that it goes through for the discrete Galerkin 
equations in exactly the same manner, using the analogue, Theorem 4.4, of Theorem 
4.1. First we need the discrete analogue of (3.16)-(3.20), embodied in the following 
lemma. 

LEMMA 5.3. There exists a constant ^I such that for all , E C, with 

I arg ,sI < (1 - a)ir/2, there holds 

(5.8) II,i(L + ,UA)-'AIIl < a 

In particular, 

bo 

(5.9) ,u(L +,UA)-'A= b2 b1 bO 

where the bi E C(P+1)x(P+1) satisfy 

(5.10) llbnll < c([1 + I,In]-1 - [1 + I,iI(n + 1)']-1) for all n, 

and 
oo 

(5.11) L llbn+i - bill < cl ,uln' for all n, 
i=O 

where c and c1 are constants independent of , and n. 

The proof is given in the appendix and for small I,al relies on some results of 
de Bruijn and Erdos [6], compare Bakke and Jackiewicz [2]. For Il,u bounded away 
from zero, these results are derived from asymptotic results about the bi, uniformly 
in ,u, using some results of Luxemburg [19] and the author [8]. 

We now prove the discrete analogue of Lemma 5.1. Let BM denote 

BM = p (I + MAM) -1MAM 

with M =L- 1/2, and let 

H' ,(z) = v-1(G'(z) - vI), 

where vi > 0 is chosen such that IIH' (z)I Ioo < 1. 
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LEMMA 5.4. For G as in (1.1), there exists a constant -y such that for all 
z E l? and for all ,u E C, I arg,ul < (1- a)ir/2, one has 

11 [I + BvO,H' (z)]-1 111oo < -y. 

Proof. In Lemma 5.3 we stated that B., E '(b, e) for an L' function b, viz., 

b(t) = ctc-1 [1 + tc]-2, 

and e(t) = cita. In (4.30) and (4.31), ,ub(,ut) and e(lp!) should be replaced by 

,u1/b(pu/lt) and e(,ul/0l). So, we are considering the subset E of 4(b, e), 

E = { B,,u,H' (z) : z E l??, ,u E C, I argu Iu < (1 -ce) r/2} 

and since Corollary 3.6 tells us that 

sup 11 [I + B H,AH' (Z)]'12 < 00, 

where the sup is over all operators in E, Theorem 4.4 lets us conclude that the 
above inequality holds for the 1?? norm as well. 0 

We now have the existence of solutions of the Galerkin equations, again by an 
application of Hadamard's theorem. 

THEOREM 5.5. The Galerkin equations 

Lrhxh + AhaAG(rhxh) = Lrhy 

with I arg Al < (1 - a)ir/2 and h > 0 have a unique solution rhxh E lX for ev- 
ery rhy E l?, which depends Lipschitz continuously on rhy in the l??-topology, 
uniformly in A and h as above. 

The proof closely follows that of Theorem 5.2 and is omitted. 
The above theorem describes a sort of (numerical) stability. In the next section 

we consider the dependence of Xh on x, i.e., the stability of our method as an 
approximate projection method. Error estimates will follow from this. 

6. Stability and Error Estimates in the LOO Setting. We first consider 
the dependence of Xh on x. We phrase the result in a slightly more general form, 
with an eye towards error estimation. Recall definition (1.12) of C0(R+). 

THEOREM 6.1. Let x1,x2 E CO(R+), with X2 E DA, and let y = x1 + AAx2. 
Then for I arg Al < (1 - a)4r/2 and all h > 0, the Galerkin equations 

Lrhxh + Ah'AG(rhxh) = Lrhy 

have a unique solution Xh E Sp,(h) which depends Lipschitz continuously on x1, x2 

in the L??-topology, uniformly in h, i.e., if xl is the solution for y' = xl + AAx2 
and XA is the solution for y3 - x3 + AAx4, then 

(6.1) |IIX - Xh | LOO (R+) <c{ IIx _ X3 IILOO(R+) + ||x2 - x4llLO(R+)}, 

with c independent of h, A. 

COROLLARY 6.2. Let x E CO(R+), with G(x) E DA, and let y = x+ AAG(x). 
Then the Galerkin equations 

Lrhxh + Ah'AG(rhxh) = Lrhy 
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define a Lipschitz continuous map 

CO(R+) X - Xh E S(h), 

uniformly in h > 0. Moreover, this holds even if G(x) 0 DA. 

Proof of Theorem 6.1. If x1 E C0(R+) and X2 = G(X) E DA, then x1 + AAx2 E 
CO(R+), and Theorem 5.5 gives us the existence of the solution xk E Sp(h) of the 
equation 

Lrhxl + Ah'AG(rhx') = Lrh(x' + AAX2). 

Let rhXh be the solution for the right-hand side Lrh(x3 + AAx4). Now define 

Yh: [0, 1] - I' by 

yh(t) = tLrh(xI + AAx2) + (1 - t)Lrh(x3 + AAx4), 

and let xh (t) be the solution of 

Lrhxh(t) + AhaAG(rhxh(t)) = Yh(t). 

By means of the Kolodner argument (to eliminate the unbounded operator A) and 
the standard reasoning in connection with Hadamard's theorem, we then see that 
Xh(t) is differentiable with respect to t, and that 

rh (Xh (1) -Xh (0)) 

(6.2) - f'[L + AhaAG'(rhxh(t))]-Lrh[(Xl _ X3) + AA(X2 _ X4)] dt. 

From Lemma 5.4 we know that (after the usual manipulation following Kolodner) 

sup 11 [L + AhaAG(rhZh)]1 111l < x, 

where the supremum is over all A, h and Zh. So the question is whether 

(6.3) T = A[L + Ah'AG'(rhzh)]-'LrhA 

as a mapping from L? (R+) into 1? is bounded as well. 
So let y E LOO (R+). Similar to [10, Lemma 2.6], it can be shown that there 

exists a bh E SP(h) and eh E I' with 

LrhAy = h'ArhAbh + h eh 

and 

II?kh1iLo(R+) + jjeh lj|1 <_ CIlYlILoL(R+). 

Since A-': l1? - 1? is bounded [10, Lemma 4.7], there exists a 'Oh E SP(h) such 
that 

(6.4) LrhAy = h'Arhi/h 

and 

(6.5) l!45h1ILoo(R+) < C1l1YjjLOo(R+). 
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(In effect, this says that the Galerkin methods under consideration, when applied 
to the Abel-type integral equation of the first kind on (0, oo) 

rt 

(t - s)`1x(s) ds = y(t), t > 0, 

is stable as a projection method. In [10] this was shown only for a finite interval.) 
Consequently, from (6.4)-(6.5) we get that 

Ty = ha [L + AhaAGI (rhZh)V I Arh'Oh 
= {I - [L + AhaAG (rhzh)] L}[G'(rhzh)] 1rh'Ih, 

and since 

JJ[G (rhZh)]111J < 6 1, 

together with Lemma 5.4, we obtain 

IITyIIilo < 
cllrhXhlllO 

< 
C1IIYIILo(R+). 

Thus, T: LI (R+) -- 1? is bounded, uniformly in h > 0. Since, evidently, Xh(1) = 

xi and Xh(0) = X3, we then obtain the result (6.1) from (6.2), (6.3). 0 
The error estimates for the Galerkin method in the L? setting now follow easily. 
The Galerkin approximation xh to x satisfies 

(6.6) Lrhxh + Ah'AG(rhxh) = Lrh[x + AAG(x)], 

whereas x satisfies, assuming x E CO(R+), 

(6.7) Lrhx + Ah'AG(rhx) = Lrh[x + AAphrhG(x)]. 

Equation (6.7) holds by virtue of the construction of A. Now Theorem 6.1 tells us 
that 

IIXh - PhrhXIILoo(R+) < cJJG(X) - PhrhG(x)IILo(R+), 

and the standard projection-method argument then gives that 

IIXh - phrhXIILoo(R+) < cl inf |IG(x) - 1IILOO(R+)i 

where the infimum is over all b E Sp(h). We have thus proven 

THEOREM 6.3. Under the same conditions as in Theorem 6.1, the Galerkin 
approximations Xh to x satisfy 

IIxh - phrhxIIL-(R+) < c inf{||G(x) -0I4IL(R+): / E Sp(h)}. 

COROLLARY 6.4. If G(x) E Cp+1(R+), then 

IIXh - PhrhXIIL-o(R+) < chp'1 IG(x)IICcp+i 
Remark. If x itself is not smooth, then these estimates merely say that rhXh (the 

sampled values of Xh) are good approximations to rhx (the values of the function 
we want to find). No conclusions about the global error Ilxh - XIIL-(R+) can be 
drawn. 

7. Numerical Experiments. We present some numerical results for the equa- 
tion 

(7.1) x(t) + A f(t - s)-1/2 1 (s) ds = y(t), t > 0, 
1-Ox(s) 
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which arises in the singular perturbation analysis of an electrothermal rod atomizer, 
Paveri-Fontana and Rigacci [22]. Here A > 0 and 0 E [0,1). 

The nonlinear term in (7.1) is not really covered by our analysis. However, if 
the solution x(t) is such that 0 < x(t) < 1, say, then a posteriori the nonlinearity 
belongs to the type described in (1.1). For numerical purposes, we replace the 
nonlinearity by 

xi x <O, 

-Ox' 0 <x<l g (S'X) - 
x, 

(1 - 0)21 

and this does satisfy condition (1.2). 

The analysis of Eq. (1.1), or (7.1), assumes that g(t,x(t)) and y(t) are smooth 
functions of t. These are actually contradictory assumptions, and so we must modify 
(7.1) as follows. Assuming that y(t) has an asymptotic expansion in powers of t1/2 

near t = 0, it follows that x(t) and g(t, x(t)) behave likewise, see Brunner [4]. As 
in [11], there exist numbers zi dependent on the scaling parameter /c such that 

(7.2) g(t, x(t))= ZE _(1 rt)( +3) + , t-+O. 

It is now a nice exercise to check that once the zi are known, we may modify Eq. 
(1.1) as 

ft I/( (KS) i/2 
x(t) + A ](t-S)1/2 { Z(S)) - E Zi (1 + K,s)(i+3)/2 jds 

= y(t) - AK1/2 E ziB (21 ) (1+ Kt)/2+1' 

with the summations as in (7.2). It now follows from Corollary 6.4 that the Galerkin 
method (2.9) applied to Eq. (7.3) yields O(hp+1) convergence. In practice, the zi 
must be approximated as well, e.g., as in [11]. 

We show some results of the Galerkin method for Eq. (7.3) for various A, 0 and 
y(t) _ 1. For 0 = 0 the solution is known, x(t) = Ec,(-Ar(a)tc9), with a = 2 

See (3.17)-(3.18). We use the Galerkin method (2.9), and for the parameters Uq 
we choose the Gauss points for the interval [0,1]. We obtain approximations at 
the knots ih by Lagrange interpolation of degree 2P + 1 on the computed samples 
rhXh for the intervals [(i - 1)h, (i + 1)h]. This (probably) results in some averaging 
of the approximation errors, and gives better results than setting up = 1, e.g., as 
in the choice described following (7.4). Interpolation works well away from 0. To 
obtain good results near 0, one would have to interpolate the approximately smooth 
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function 
2 P+ 1 (,ct)i/2 

(7.4) Xh(t)- X, (1 + ct)(i+3)/2' 
i=O 

cf. (7.2), and then adding the correction term. We have not done so here. 
We compare the results with the collocation method for Eq. (7.3), 

(7.5) rhXh + rhAPhrhGh(Xh) = rhY, 

Xk E Sp(h), 

as described by Brunner [4]. See also [11]. Here Gh reflects the fact that the zi in 
(7.3) will depend on h, in general. For the parameters uq we choose the abscissas 
711, 1 = 0, 1, ... , P, of the interpolatory quadrature rule for the integral 

1 

(7.6) v (r)(1 - r)-1/2 dr 

which is exact for v(r) = ri, i = 0, 1,.. ., 2P, as given by te Riele [24, Table 1]. 
This choice appears to give the best results. 

For the case A = 1, 0 = 0 the results of the Galerkin method and collocation 
method are roughly equivalent: the Galerkin method is slightly more accurate at 
points far away from 0, while the collocation method tends to be more accurate 
close to 0. This holds for both P = 2 and P = 3. 

We also give some results for Eq. (7.3) with A = 0.1 and 0 = 0.5. Since the 
solution is not known, we present the results in Table 3 together with some asymp- 
totic information. We also give the results of A = 1, 0 = 0 in the same format, 
for comparison purposes (Table 4). The nonlinearity does not appear to affect the 
performance of the Galerkin and collocation method. Again, both methods appear 
to be comparable. 

If we try to solve (7.1) as is, e.g., for A = 1, 0 = 0, then the results are not very 
good for the collocation method (P = 3, h = 0.0125), the error being .272(-7) 
at 10.0. However, for the Galerkin method the error is .218(-13) already for 
stepsize h = 0.1. The effect of interpolation is marginal: the error at the nearest 
interpolation point is .177(-12). However, for both methods the error is about 
.3(-3) close to 0. See Table 5. We may thus conclude that the long-range stability 
of the Galerkin method appears to have practical consequences as well. 

As a final comment, we discuss the computational effort involved. Once the 
system matrices and right-hand sides have been determined, the cost of solving the 
system of equations is exactly the same for both the Galerkin method and the collo- 
cation method. The cost of computing the right-hand side for the Galerkin method 
is negligible. However, the cost of computing the system matrix for the Galerkin 
method is a lot higher than that for the collocation method. It thus appears that 
the collocation method is easier to apply. The advantage of the Galerkin method is 
largely theoretical: we can prove its stability for arbitrarily long intervals. For the 
collocation method this is next to impossible (compare with the similar situation 
for Abel-type integral equations of the first kind, [10]). It can be argued that the 
long-interval stability of the Galerkin method is the reason for the better long-range 
behavior of the method. 
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TABLE la 

Collocation for (7.3). A = 1, 8 = 0, P = 2, c=5. 

h 0.1 0.05 0.025 0.0125 
t 
0.1 .296(-5) .109(-5) .642(-7) - .117(-8) 

2.7 17 55 
1.0 - .655(-6) - .110(-7) .183(-8) .244(-9) 

60 6.0 7.5 
10.0 - .299(-7) - .102(-8) .507(-11) .119(-11) 

29 200 4.2 
max .474(-4) - .257(-4) - .384(-5) - .328(-6) 

1.8 6.7 1.2 

TABLE lb 

Galerkin for (7.3). A=1, 0=0, P=2, 5c=5. 

h 0.1 0.05 0.025 0.0125 
t 
0.1 .987(-4) .382(-5) .305(-6) .266(-7) 

26 12 12 
1.0 - .325(-7) - .316(-8) - .599(-9) - .668(-10) 

10 5.3 9.0 
10.0 .180(-8) .197(-9) .659(-11) .210(-12) 

9.1 30 31 
max .987(-4) .609(-4) .439(-4) .316(-4) 

1.6 1.39 1.39 

TABLE 2a 

Collocation for (7.3). A = 1, 0 = 0, P = 3, /c=5. 

h 0.1 0.05 0.025 0.0125 
t 
0.1 - .280(-7) .376(-8) .108(-9) - .775(-11) 

7.4 35 14 
1.0 - .192(-8) .893(-11) .164(-11) .143(-12) 

210 5.4 11 
10.0 - .931(-10) - .138(-12) .567(-13) .595(-14) 

670 2.4 9.5 
max .129(-5) .132(-6) .890(-8) .130(-8) 

9.8 15 6.8 

TABLE 2b 

Galerkin for (7.3). A = 1, 0 = 0, P = 3, X = 5. 

h 0.1 0.05 0.025 0.0125 
t 
0.1 - .893(-5) - .244(-9) .705(-9) .365(-10) 

... 3.5 19 
1.0 .369(-9) .192(-10) .950(-12) .154(-12) 

19 20 6.2 
10.0 .100(-11) .408(-12) .520(-13) .527(-13) 

2.5 7.8 1.0 
max - .893(-5) - .624(-5) - .442(-5) - .314(-5) 
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TABLE 3a 

Collocation for (7.3). A = 0.1, 0 = 0.5, P = 2, /c=5. 

Shown are the approximate solutions for various points and stepsizes, the differences 
between solutions for consecutive stepsizes, and their ratios. 

h 0.1 0.05 0.025 0.0125 
t 
0.1 .893388813 .893387888 .893387727 .893387712 

-.925(-6) 5.8 - .160(-6) 10.2 -.157(-7) 
1.0 .740500181 .740500078 .740500081 .740500081 

- .103(-6) - 36.1 .285(-8) - 9.0 - .315(-9) 
10.0 .497373850 .497373836 .497373837 .497393837 

- .138(-7) - 27.6 .501(-9) - 27.3 - .184(-10) 

TABLE 3b 

Galerkin for (7.3). A = 0.1, 0 = 0.5, P = 2, /c=5. 

h 0.1 0.05 0.025 0.0125 
t 
0.1 .89340397 .893388202 .893387751 .893387714 

-.157(-4) 34.8 -.451(-6) 12.1 -.373(-7) 
1.0 .740500076 .740500079 .740500081 .740500081 

.328(-8) 2.3 .143(-8) 6.7 .214(-9) 
10.0 .497373841 .497373837 .497373837 .497373837 

-.418(-8) 20.0 -.209(-9) 30.9 -.674(-11) 

TABLE 4a 

Collocation for (7.3). A = 1, 0 = 0, P = 2, /c=5. 

h 0.1 0.05 0.025 0.0125 
t 
0.1 .585943790 .585941925 .585940895 .585940829 

- .186(-5) 1.8 - .103(-5) 15.8 -.653(-7) 
1.0 .282058521 .282059165 .282059178 .282059176 

.644(-6) 50.1 .129(-7) - 8.1 - .159(-8) 
10.0 .099127365 .099127395 .099127395 .099127395 

.289(-7) 28.3 .102(-8) - 263 - .388(-11) 

TABLE 4b 

Galerkin for (7.3). A =1, 0 = 0, P = 2, /c=5. 

h 0.1 0.05 0.025 0.0125 
t 
0.1 .586039525 .585944651 .585941136 .585940857 

-.949(-4) 27.0 -.351(-5) 12.6 -.279(-6) 
1.0 .282059144 .282059173 .282059176 .282059176 

.294(-7) 11.5 .256(-8) 4.8 .533(-9) 
10.0 .099127397 .099127395 .099127395' .099127395 

- .160(-8) 8.4 - .191(-9) 29.9 - .638(-11) 
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TABLE 5 

Galerkin for (7.1). A = 1, 0 = 0 , P = 3. 

Shown are the errors in the computed solution at the meshpoints ih obtained by 
interpolation on the eight sample points in the interval ((i - 1)h, (i+ 1)h) for various 
points and stepsizes. The maximum errors shown are those for the Galerkin scheme 
proper. Also shown are the ratios of errors for consecutive stepsizes when the errors 
are substantially smaller than machine precision (about 10-13). 

h 0.1 0.05 0.025 0.0125 
t 
0.1 .845(-3) - .302(-5) - .203(-7) - .466(-9) 

280 150 44 
1.0 - .688(-9) - .238(-10) - .779(-12) - .108(-12) 

30 31 7.2 
10.0 .218(-13) .525(-13) .586(-13) - .654(-13) 

max - .845(-3) .593(-2) .419(-2) .296(-2) 
1.42 1.42 1.42 

Shown are the errors in the computed solution for various points and stepsizes. 
Also shown are the ratios of errors for consecutive stepsizes. 

Appendix. Here we set out to prove Lemma 5.3. It is helpful to introduce the 
class Z(P, /) of sequences of P x P matrices that tend to zero at a certain rate: 

(A. 1) Y(P,/3) ={{an}n>o: an E CPxP, lim n-dan exists 

It is convenient to write &(() E Z(P, /) when a(() = ann and {an}n E 
ED(P, /). Confusion should not arise because of this. Note that ED(P, /) C Z(P, y) 
for / < -y. We have the following results. 

LEMMA A.1 (a) (Luxemburg [19]). Let /, y < -1. If A E Z(P,/3) and B E 
Z(P, -y), then {,En An-iBinE E Z(P, 6), where 6 = max(/3, -y). 

(b) (Luxemburg [19], Eggermont [8]). If A eE D(P, /) for some d < -1, and 
A(() is nonsingular for all 1(1 < 1, then V(() = [A(g)]-' E D(P,/3), and if 
liMnc00 'n-3An = r, then limn1n00 n-r3Vn =-[A(1)]-1r[A(1)]-1. 

Remark. In part (b) of the lemma the matrix case P > 1 reduces to the scalar 
case P = 1 by means of Cramer's rule. 

We now state some salient facts about the Galerkin matrix A. We let 
00 

(A.2) A(() = > Lo"2AnLU"2gi, ki < 1A 
n=O 

where Ai is given by (2.10) and the discussion following it, and Lo E R(P+l)x(P+l) 

is the diagonal block of L. 

LEMMA A.2. There exists a nonsingular matrix U E R(P+l)x(P+l) such that 
for all 11 < 1 

(A.3) uA()u-1 E)C ) 

where C E Y(P + 1, -a - 1) and 
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in which 
.1) (1 - wc*o( a( (1 

OW 
0l_(1- a 2(1 _(2a+( 

Here, a = Aa(a + 1)r(a - 1), 
12~~~~o 

(A.5) (1E- )-j(() = {(n + 1)c+1 - 2nf+1 + (n - 
n=O 

/ E (1, -a - 1), and 4(() : 0 for all 141 < 1. Moreover, for allp E C, I arg ul < 
(1 - a)ir/2 there holds 

(A.6) Re(x, A(0)x)cP+1 > 0, 141 < 1, x (E CP+1 

and [A(e)]-1 E 3(P + 1,-a - 1). 

Proof. We begin by showing (A.6). Let 141 < 1 and x E CP+l. Define y E 12 by 
Y* = (yy*1 ...) in which yi = (ix. Then 

(X, A(()x)cP+i = (y, Ay)12, 

and (A.6) follows from Lemma 3.4. 
Now to (A.3). Let U(Lo)1/2 be the transformation of CP+l that corresponds to 

the change of basis lq(x), q = ,1, .. ., P, for PPp to the basis pq(x), q = 0,1, .. ., P, 
where Pq(x) = wq/2Pq(2x - 1) is the normalized, shifted Legendre polynomial of 
degree q. We denote the transformed Ai again by Ai. Then 

I I1 
(A.7) (Ai)qr =fpq(x) (i +x-Y)"j1pr(y)dy. 

Straightforward calculations show that 

(Ai)o,o = [(i + 2)"+1 - 2ia+1 + (i - 1)a+1]/a(a + 1), 

cf. (A.5), and it is shown in [9, Lemma 4.6] that 
00 

a(a + 1) Z(Ai)oo$' = (1 - ()-c(() ki < 1, 
i=o 

with E E Z(1, -a - 1) and ?(() $ 0 for all 141 < 1, and thus also that [?/4)]1 E 
E(1,-a - 1), by Lemma A.1. 

Writing (i + x y)- = i- + ( - y)i-2 + O(i-3) for i -- oo, we get 

Aiqr = i1(pq,1)(pr,1) +'ia2{(Pq, X ) -(Pr, x-_)} +-O(i ), 

where (., ) is the L2(0,1) inner product. It follows from the orthogonality of the 
Legendre polynomials that aiqr = O(i-3) for (q, r) :$ (0, 0), (1,0), (0,1). Since 
(Ai ) 1 ,o ~ lAi- 2, it follows that 

[A(()],,o = r(a - 1)(1 - ()1-c/12 + &(() 

with & E Z(1,a - 3), and similarly for [A(()]0oj. All this shows, since 9ii(() E 

E(1,-a - 1), that 

A(6) = a(a + 1)E(6) + E(6) 
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with E E X(P + 1, -a - 1). One verifies that det 0(g) = (1 - 0 never 
vanishes, whence 

(1 
- 

MO W)2 - 

-= [ (1 - 1-)/_(_) 

and thus by Lemma A.1, [ E(E)]-' E i(2, -a - 1). Therefore, [0(()]-1 and 

[o(()]-k(~) eE 3(P + 1, -a - 1). Thus, 

A(g) = O(g)[a(a + 1)I + 

and (A.3)-(A.5) follow. Finally, as in [9], using (A.6), it can be shown that C(() is 
nonsingular for all 1j1 < 1 and thus by Lemma A.1 also [C(()]-' E E(P+l, -a-1); 
then, finally, [A(()]'- E Y(P + 1, -a - 1). 0 

We are now ready for 
Proof of Lemma 5.3 for ,i bounded away from zero. Let is E C, I arg,jl < 

(1 - a)ir/2 and I1ul > r for some r > 0. Note that in Lemma 5.3 the condition 
(5.11) is vacuously satisfied (once (5.8) holds). 

It follows from (A.6) that 

Re(x, [I + ,uA(1)]x)cP+, > jjXj12cp+1 

and thus [I + ,iA( )]' exists for all I6j < 1. Now set 

W(() = ,4[I + tzA()p-'A(() = [I + V-'V(0)f- 
with 

V(4) = [A(()]-' E E(P + 1, -a - 1). 
We thus have Vn -rn-r- for some r, and then Wn - W rn-c-1 with 

W. = H-I[i + -1V'(1)]-1r[I + p- V(1)]-l. 

Moreover, the asymptotic behavior holds uniformly in ,u-1, since 1t-1 is an element 
of the set 

{z E C: zl < r, I arg zl < (1- a)ir/2} 

which is a compact set, cf. [8, p. 264]. Thus we have (5.10), since I,ul > r is bounded 
away from zero. Then also ?Io IlWnll < oo uniformly in ,u, which is (5.8). 0 

The proof of Lemma 5.3 for 1,Ul < r is more involved. We first consider the 
class of mappings a of Sr = {/1 E C: I,Ui < r, j argal < (1 - a)ir/2} into the set of 
absolutely summable sequences of P x P matrices, i.e., a: /2 E Sr {an (11) }n E 11, 

for which there exist constants ml (a), m2 (a) such that 
00 

(M.1) IlIalM = sup E Ilan(/A)II < 00, 
iAESr n=0 

00 

(M.2) E llai-ni() - ai(,u)II < ml(a)j/2jna, 
i=o 

(M.3) ilan(,)I11 < m2(a)([1 + I/In']-' - [1 + l/lI(n + 1)Y]-'). 
In (M.2) elements with negative subscripts are defined to be zero. We denote this 
class of mappings by M(Sr, P), or also just M(P). In M(P) convolution is defined 
in the usual way: a * b(,u) for ,u E Sr is defined by 

n 

(a(/u) * b(2))n = Ean - i(/)bi(p), n > 0. 
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If a E M(P), then 
00 

a(,u, () = 2 an7(,)n' ki < 1, 

n=O 

and then (a (Q)*b( t))^(() = a(,a, ()b((,, (). If a E M(P) we also say &(,u, () E M(P), 
and vice versa. We have the following results (compare Luxemburg [19]). 

LEMMA A .3. If x E Y(P,-a -1) and a, b E M(P), then ux and a * b are both 
elements of M(P), and 

Ila * bllM < l|alIMlIblIM, 
ml(a*b) < lialiM ml(b), 

m2(a * b) < [libllM m2(a) + IlallM m2(b)] 2'. 

Proof. It is easily verified that the mapping a E Sr -, ax, where x is a fixed 
element of E (P, -a - 1), is an element of M(Sr, P). Obviously, IIa(u) * b(,u)IIii < 

IIa(,u)IIi Ila(,)I11ii, and we get (M.1). Also, from 

(1 -_ )n(a(,u) * b(,u))a(p) = &s, ()[(1 -_ )nb(lt, ,)] 

it follows that 
00 00 

E 11(a(p) * b(G))i-n -(a(u) * b(,u))iII < Ila(Gll)Iii E Ilbi-n(I)b-bi) - 
)l 

i=O i=O 

where elements with negative subscripts vanish. Thus a(,u) * b(,u) satisfies (M.2), 
and the estimate for ml (a * b) follows. 

Finally (dropping the ,u dependence in the notation), 

k n 

11(a * b)n 11 < 1: ilai 11 libn-i 11 + 1: ilai 11 libn-i 11 i 

i=O i=k+l 

where k = Ln/2J, which can be estimated as 

(SUp ||bj||) lialill + (sup ilaill) liblill. 
j>n/2 i>n/2 

By the properties (M.1)-(M.3) for both a and b, the property (M.3) of a * b fol- 
lows, as well as the estimate for m2 (a * b): the factor 2& is the upper bound of 
[1 + l,ulna]/[l + l,ulk]. The lemma follows. Oj 

COROLLARY A.4. If a E M(P) and a*k is the k-fold convolution of a with 
itself, then 

IIa*kIIM < jjajjMk 

mi(a*k) < ml(a)jjajlkM7, 

m2(a*k) < m2(a) k(2allaIIM)k-1. 

LEMMA A .5. If a E M(P) and IlallM < uf < 1, then also 

I- [I-a(,u, )]'-1 e M(P). 
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Proof. Setting b(,u, ) = I - [I - &(,, ()V'1 we get 
00 00 

b(,u, ,) = 5a[-(Jj, ()]k = Ea*k](U, (), 
k=1 k=1 

and so lIb(,i)Iill < Z' Ila(/u)IIk < o(1 -)-1. Then also b(,u, () satisfies (M.2) with 
m1(b) = mo(a)/(l-a). To prove (M.3), choose N so large that 2auN <u and 
set x = a*N . Then IIXIIM < CN, and so 2alIxIIM < a. Note that by Corollary A.4 
we then have x E M(P) with m2(x*k) < m2(x)kUk-l. Now write b(,u) as 

b(1u) = Q(,u) + R(p1) + Q(tu)R(u) 

with 
N-1 00 

Q(,u) = E a*k(j), R(p) = X*k(P) 
k=1 k=1 

Then Q e M(P), since it is a finite linear combination of elements of M(P). Since 

lixiIM < 1, by what we have shown above, we have that R satisfies (M.1)-(M.2). It 
is easily verified that R satisfies (M.3) with 

00 

m2 (R) < E m2 (x*k) < m2(X)/(l- _7)2. 
k=1 

Thus, R E M(P), and then so is b. O 
After these preliminaries (sic) we are ready to prove Lemma 5.3 for small ,u. We 

start with the scalar case P = 0. 

LEMMA A.6. Let q(() = (1 -)- /(,), see (A.5). Then 

4[1 + Eb(.)]-q$(() e M(S1, P). 

Proof. First let it E R, 0 < ,u < 1. It is shown in [9], using some results of 
de Bruijn and Erd6s [6], that [1 + p ( )]' - = t i q5i with Oo = (1 + ,t)1, 
/i < qij+ < 0, and |1 - qoI + EjI?' 1| iI = 1. (See also Bakke and Jackiewicz [2].) 
So, upon setting 

a(,u, () = 1-[1 + ,uO(W)]-1 = /41 + P0sq(,)1?(s ), 

we obtain IlaCu)llii = 1 and ai(1u) > ai+1 (,) > 0 for all i > 0. It follows that 

oo n 

E jai-n- 1 (,u)-ai (1) 2 E ai (()) - 
i=o i=o 

Since e-1 < e-i/n for i = 0, 1, ... , n, we then get that, cf. de Bruijn and Erdos [6], 
n n 00 

e-1 E ai(,u) < E aj(/,z)e-i/n < E aj(jz)e-i/n 
- 

&(fzt, e-1/n) 
i=o i=O i=O 

and thus (M.2) follows (noting that i1(1) 54 0). To show (M.3), we use the same 
trick, leading to 

00 00 

ai(n <( )-1 1ia(O)(1i-=e-i/n) = (1 -ie-l)-[1 - a( -1/ 

i=n i=O 
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and so 
00 

(A.8) E ai (u) < c[l + na]. 
i=n 

Now to prove (M.3), first suppose that iuna > 1. From (A.8) and the monotonicity 
and positivity of the ai (,u) we get for all k > 0, 

n+k 

(k + l)an+k(,u) < Ej ai(Gu) < c[l + yuna]l. 
i=n 

Now take k = [(1 + tna)/una-lJ. Then n < k < 2n, and 

an+k (I) < c,un- 1 [1 + una]-2. 

Now a3n < an+k, and so 

(A.9) an(,u) ? clunc-1[1 + ,una]-2 

which is equivalent to (M.3). 
Now suppose that ,un' < 1. By the monotonicity of the ai (,u) we get from (M.2) 

(already established) that (n + 1)an(,u) < c,un', and so an(,u) < cyun-l. Now for 
iuna < 1, this implies the estimate (A.9), since [1 + ,un]-2 > 1/4. So again (M.3) 
follows. 

Thus, a(,u, ) E M(P) for real ,u, 0 < ,u < 1. 
Now consider the complex case j,uj < 1, 1 arg ul < (1 - a)7r/2. Then, let v = 

ei arg A and set R = [cos(arg,u)]-l. One verifies that q = (v - R)/R satisfies 
1qj = sin(arg,u) < cosackr/2, which is strictly less than 1. Now do the familiar 
Kolodner manipulations to obtain 

a,u, () = R [1 + a(Rj,uj, ()]-"a(Rj,u, (), 
and so by Lemma A.5 then a(,u, E) E M(S1, 1). 0 

LEMMA A. 7. Let e(() be as in (A.4). Then there exists an r > 0 such that 

,u[l + IiE9() ) E M(Sr, P + 1). 

Proof. It suffices of course to consider 0(() instead of e((). Set d(j, ) = 
det(I + ,O (()). One verifies that 

d(Gu () = [1 + wk(()](1 + ,u) - p _- a O 

with X(() = (1- )-4() as before. We may rearrange this as 

d(G, 4) = [1+ jb(()][1 + te(j, ()] 
with 

e(,u, () = 1 - 72[1 + 2-)2(1 - a 

Since 

_1 - )2-2a/0()=( )-a+( _ _1 

and 
[1 + PO(W] = 1 - j[1 + Hk(() ()7 

it follows that e(,u, p) is an absolutely convergent power series for every ,u E S1. 
Also, using Lemma A.3, one verifies that ,e'(,, () E M(S1, 1). Let s = sup{jje(,u)jjj1: 
, E Sl}, and set r = min(1/2s, 1). Then it follows from Lemma A.5 that 
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1-[1 + /ue(/u, ) E M(Sr, 1) and that [1 + 
ise(p, ()]-f(' 

, () e M(Sr,) for 
every f E M(Sr, 1), and with Lemma A.6 that f(,u, 4)/d(pu, ) E M(Sr, 1) for every 
f E M(Sr, 1). Finally, upon noting that 

,ul + PO(')](_ - = ,u[ + (- )(1 - WOW 

and 

p[l + s(( 1( _)2-2a/ = j1 + 2)(()(1 - 

it follows from Lemma A.4 and Cramer's rule that I - [I + po(()]-' E M(Sr, 2). 
So 

,u[I + IiO(()V-O(() = I- + + /IO(W)]] E M(Sr, 2). C 
Proof of Lemma 5.3 for small ljul. We begin by recalling that A() = C 

with C E E4-a - 1), and that A(() - ce(ce + 1)8(() E E(-a - 1). Now consider 
B(,u, l) = ,u1 + ,uA(()]- A((). Again, the familiar Kolodner manipulations give 
that 

B(G, () = {I + ,[l + eaE3(()]- [A(() - a(a + 1)e(()]}' 
x ,u[I + E(()V' C(3)c(() 

where p. = ca(ca + 1),u. It follows from Lemma A.7 and the above that E(,u, () = 
[l+iIe(E)]- [A( a (a +i)e()] is absolutely convergent for all ,u E Sr/a (a+ ) 
with r as in Lemma A.7. Let s = sup{jjE(,u)jjji: u E SrX/(a?l)} and set 
p = min{1/2s, r/ca(ca + 1)}. It now follows from Lemma A.7 that ,uE(,u, ) E 
M(Sp, P + 1) and from Lemma A.4 that I - [I + ,uE(,u, ()]- E M(Sp, P + 1) and 
then finally that B(,u, () E M(Sp, P + 1). 0 
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